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Abstract— The paper deals with state estimation, organized in
an entry-wise manner. The entry-wise updating of the posterior
state estimates is reached via application of the chain rule
and factorization of covariance matrices. Such the filtering
provides distributions of entries of the state vectors individually
in the factorized form. Application to Gaussian linear state-
space model with Gaussian observations and Gaussian prior
distribution provides Kalman filter. A series of works has been
devoted to preparation of solution of the entry-wise filtering.
The recently proposed modification of the entry-wise algorithm
with a simultaneous fulfillment of data and time updating steps
is used at the present paper. The paper considers its application
to the mixed-type (continuous and discrete-valued) data. A
special case with an involved last discrete-valued state entry,
unlike the previous continuous ones, is described.

I. INTRODUCTION
The paper deals with the entry-wise organized fitlering

and proposes its application to mixed-type (continuous and
discrete-valued) data. Despite a number of existing ap-
proaches in the field of mixed data modelling [1], [2], [3], [4],
the estimation with mixed-type states still calls for a reliable
solution. The entry-wise filtering is a potential solution of
this problem. Via factorization of a state-space model such
the filter provides the state estimates of individual state
vector entries in the factorized form and allows to update
them entry-wise. The entry-wise updating indicates a chance
to estimate the mixed-type states. The paper presents the
algorithmic solution of a special case of the estimation with
the mixed-type state, where the last state entry is of a
discrete-valued nature, unlike the previous continuous ones.

A general motivation for the research is a traffic situation
in cities with the overloaded traffic systems and long queues
at intersections. The long queues of waiting cars strongly
affect ecology of the cities. Extension of traffic network (new
roads, flyovers, tunnels, etc) is very expensive and often
impossible, especially in historical cities. Such a situation
motivated to consider one of the steps to its improving – an
adequate modelling of a traffic area and exploitation of mod-
ern adaptive traffic control systems. The state-space models
with a queue length as the main state variable have made
a good showing for traffic control systems. But in a traffic
control domain some of the state variables are of discrete-
valued nature (signal lights, level of service, visibility, road
surface, etc). Their involvement calls for the joint modelling
of mixed-type (continuous and discrete-valued) variables.

Mixed-type data modelling is known to be hard problem
addressed within completely different context of logistic
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E. Suzdaleva is with Department of Adaptive Systems, Institute of

Information Theory and Automation of the ASCR, Pod vodárenskou věžı́
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regression. A number of flexible models for such data is
rather limited. One of the most known works in this field
was [5], which proposed the general “location model”, based
on multinomial model for the discrete data, and Gaussian
multivariate model for the continuous data, conditional on
the discrete data. This work inspired many studies in the
discussed area. The paper [1] extends the “location model”
and proposes the likelihood-based approach for analyzing
mixed continuous and discrete data. A series of papers [2],
[3] is devoted to the latent variable models with mixed data
and different modifications of the expectation-maximization
algorithm, which is exploited for finding maximum like-
lihood estimates of model parameters. The research work
[6] describes the mixed-type data modelling based on dis-
criminant analysis. The paper [7] deals with Bayesian latent
variable models for clustered mixed data and uses a Markov
chain Monte Carlo sampling algorithm for estimating the
posterior distributions of the parameters and latent variables.
More details about existing approaches can be found in [8].

As regards the state of the art of the entry-wise (factorized)
filtering, it is as follows. Most works [9], [10] found in
the field are devoted to the factorized implementations of
Kalman filtering. However, the global aim of the mentioned
works is, primarily, reduction of the computational complex-
ity via a lesser rank of the covariance matrix. Exploitation
of matrix factorization to approach the entry-wise filtering
under Bayesian methodology [11] was proposed in [12]
with a reduced form of the state-space model. The paper
[13] removed this restriction and proposed the solution of
factorized Bayesian prediction and filtering, based on apply-
ing the chain rule to the single output state-space model.
The work [14] offered the version of factorized Kalman
filtering with Gaussian models, which was based on the
L′DL decomposition of the covariance matrices. The paper
[15] expanded the line with L′DL-factorized covariance
matrices and demonstrated the application of the solution
to the traffic-control area. However, the mentioned works
had problems with preserving of the distribution form of
state entries and consequently with the entry-wise updating.
The recent paper [16] proposes the novel algorithm with
LDL′-factorized covariance matrices and simultaneous data
and time updating of the posterior state entry estimates. This
modified form of filtering is used at the present paper. The
solution proposed at the paper is expected to be applied in
the traffic control area, but not restricted to.

The paper has the following layout. Section II is devoted
to basic facts about used system model, factorization by the
chain rule and Bayesian and Kalman filtering. Section III
provides a general derivation of Kalman filter with simul-
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taneous data and time updating and presents the algorithm
of its factorized version. Subsection III-C considers the
involvement of the discrete-valued state entry at the end of
the state vector. The illustrative experiments with a simple
simulated system are shown in Section IV. Summary and
plans of future work in Section V close the paper.

II. PRELIMINARIES

A. Models

The system is described by the joint probability density
function (pdf)

f (xt, yt|xt−1, ut) , (1)

where xt is the unobservable system state at discrete time
moments t ∈ t∗ ≡ {0, . . . , t̊}, where t̊ is the cardinality of
the set t∗, ≡ means equivalence, and yt and ut are the system
output and input respectively. When the pdf (1) is Gaussian,
it includes the state evolution model (2) and observation
model (3)

xt = Axt−1 +But + ωt, (2)
yt = Cxt−1 +Hut + vt, (3)

where [A,C] and [B,H] are known joint matrices of appro-
priate dimensions; ωt is a process (Gaussian) noise with zero
mean and known covariance matrix Rw; vt is a measurement
(Gaussian) noise with zero mean and known covariance
matrix Rv .

The joint pdf (1) can be decomposed, according to the
chain rule [17], into the following factorized form.

x̊∏
i=1

f(xi;t|xi+1:̊x;t, ut, xt−1, yt)
ẙ∏
j=1

f(yj;t|yj+1:̊y;t, ut, xt−1),

(4)
where x̊ and ẙ are numbers of entries of column vec-
tors xt and yt respectively, i = {1, . . . , x̊}, j =
{1, . . . , ẙ}, and such a notation as xi+1:̊x;t denotes a se-
quence {xi+1;t, xi+2;t, . . . , xx̊;t}.

B. Bayesian filtering

Bayesian filtering [17] includes two coupled formulae.

f(xt|ut, d t−1) =
∫
f(xt|ut, xt−1), (5)

× f(xt−1|d t−1)dxt−1,

f(xt|d t) ∝ f(yt|ut, xt)f(xt|ut, d t−1), (6)

where ∝ means proportionality, data are defined as d t =
(d0, . . . , d̊t), dt ≡ (yt, ut). Relation (5) represents the time
updating of the state estimate, while (6) – the data updating.
The application of (5) and (6) to Gaussian state-space model
with Gaussian prior distribution and Gaussian observations
provides Kalman filter [18].

III. ENTRY-WISE FILTERING WITH INVOLVED
DISCRETE-VALUED STATE

A. Simultaneous Data and Time Updating

Manupilation with the state-space model in the form of
joint pdf (1) allows to rewrite Bayesian filtering so that
the data and time updating are fulfilled simultaneously.
Generally, with the help of Bayes rule [17], one obtains the
following relation

f(yt, xt|ut, d t−1) = f(yt|ut, d t−1, xt)f(xt|ut, d t−1),
= f(xt|d t)f(yt|ut, d t−1), (7)

which provides the data updating (6) in the form

f(xt|d t) =
f(yt, xt|ut, d t−1)
f(yt|ut, d t−1)

, (8)

with Bayesian predictor [17] as a denominator. With the
help of operation of marginalization [17] and according to
the used model, one can obtain the expression of filtering
with relations (5) and (6) to be fulfilled simultaneously (i.e.
simultaneous data and time updating).

f(xt|d t) =
f(yt, xt|ut, d t−1)
f(yt|ut, d t−1)

, (9)

=
∫
f(xt, yt, xt−1|ut, d t−1) dxt−1

f(yt|ut, d t−1)
,

=
∫
f(xt, yt|ut, xt−1)f(xt−1|d t−1) dxt−1

f(yt|ut, d t−1)
,

∝
∫
f(xt, yt|ut, xt−1)f(xt−1|d t−1) dxt−1.

Substitution of (4) in (9) and decomposition of the initial
state according to the chain rule provide the following
factorized form of (9).

f(xt|d t) ∝
∫ x̊∏

i=1

f(xi;t|xi+1:̊x;t, ut, xt−1, yt), (10)

×
ẙ∏
j=1

f(yj;t|yj+1:̊y;t, ut, xt−1),

×
x̊∏
i=1

f(xi;t−1|xi+1:̊x;t−1, d
t−1)dxt−1.

The left-hand side of (10) is assumed to be f(xt|d t) =∏x̊
i=1 f(xi;t|xi+1:̊x;t, d

t), and a presence of vector xt−1 in
all pdfs in (10) means involvement of all entries of the
respective vector in integration. Such the notations are used
only for shortening of the equation.

B. Algorithm of Factorized Kalman Filtering

The entry-wise updating assumed in (10) and preserving
of the factorized form (4) of the posterior state estimate
f(xt|d t) =

∏x̊
i=1 f(xi;t|xi+1:̊x;t, d

t) can be reached via
LDL′ decomposition [11] of the precision (i.e. inverse
covariance) matrices. Such the decomposition supposes L
to be a lower triangular matrix with unit diagonal, D to
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be a diagonal one, ′ – transposition. This kind of matrix
decomposition is used throughout the paper.

The key moments of the entry-wise organized Kalman
filter (10), applied to Gaussian models (2-3) are as follows.

1) Factorization of State Evolution Model: Gaussian state
evolution model (2) is factorized in the following way.
The process noise covariance matrix Rw is inverted into a
precision matrix and decomposed so that

R−1
w = LwDwL

′
w. (11)

The factorized Gaussian quadratic form, corresponding to the
model (2), becomes now

[L′wxt − zt − Ξxt−1]′Dw[L′wxt − zt − Ξxt−1], (12)

where

zt = L′wBut, (13)
Ξ = L′wA. (14)

Gaussian distribution of an individual state entry has the
following form.

Nxi;t(zi −
x̊∑

k=i+1

Lw;kixk;t +
x̊∑
l=1

Ξilxl;t−1,
1

Dw;ii
). (15)

where Lw;ki, Ξil and Dw;ii are the elements of matrices Lw,
Ξ and Dw respectively.

2) Factorization of Observation Model: Factorization of
Gaussian observation model (3) is fulfilled similarly. The
measurement noise covariance matrix Rv is inverted into the
precision matrix and decomposed so that

R−1
v = LvDvL

′
v, (16)

The factorized quadratic form, corresponding to the model
(3), is as follows.

[L′vyt − ρt −Axt−1]′Dv[L′vyt − ρt −Axt−1], (17)

where

ρt = L′vHut, (18)
A = L′vC. (19)

Gaussian distribution of an individual output entry takes the
form

Nyj;t(ρj −
ẙ∑

k=j+1

Lv;kjyk;t +
x̊∑
l=1

Ajlxl;t−1,
1

Dv;jj
). (20)

where Lv;kj , Ajl and Dv;jj are the elements of matrices Lv ,
A and Dv respectively.

3) Initial State Factorization: The initial state Gaussian
distribution f(xt−1|d t−1) ∼ N (µ0, P0), where µ0 is a
known vector of mean values and P0 is a known covariance
matrix, is also factorized in the similar way. Decomposition
of the precision matrix is done so that

P−1
0 = Lp|0Dp|0L

′
p|0. (21)

The factorized quadratic form, corresponding to Gaussian
distribution of the initial state, looks like

[L′p|0x0 − µf0 ]′Dp|0[L′p|0x0 − µf0 ], (22)

with

µf0 = L′p|0µ0. (23)

Via (21) the initial state entries have the following factorized
form of Gaussian distribution.

Nxi;0(µfi;0 −
x̊∑

k=i+1

Lp|0;kixk;0,
1

Dp|0;ii
). (24)

where Lp|0;ki and Dp|0;ii are the elements of matrices Lp|0
and Dp|0 respectively.

4) Factorized Simultaneous Data & Time Updating: The
simultaneous data and time updating in the factorized form is
proposed as follows. After integration in (10) and completion
of squares the following quadratic form for the factorized
state is obtained.

[L′wxt − µ∗t ]
′
D̃t [L′wxt − µ∗t ] , (25)

where

µ∗t = zt + D̃−1, (26)
× (DwΞÃ−1

t (A′Dv(L′vyt − ρt),
+ Lp|t−1Dp|t−1µ

f
t−1)),

Ωt = diag
[
Dw, Dv, Dp|t−1

]
, (27)

Ãt = [Ξ; A; L′p|t−1]′Ωt[Ξ; A; L′p|t−1], (28)

D̃t = Dw −DwΞÃt
−1

Ξ′Dw. (29)

The matrix D̃t, obtained in (29) is decomposed so that

D̃t = Lu|tDu|tL
′
u|t. (30)

After decomposition and factorization of the quadratic form
(25), the updated factorized Gaussian quadratic form is
obtained.L′u|tL′w︸ ︷︷ ︸

L′
p|t

xt − L′u|tµ
∗
t︸ ︷︷ ︸

µf
t


′

Du|t︸︷︷︸
Dp|t

[
L′p|txt − µ

f
t

]
. (31)

It means, that the updating of the decomposed matrices and
the factorized mean value is as follows.

Dp|t = Du|t, (32)
Lp|t = Lu|tLw, (33)

µft = L′u|tµ
∗
t , (34)

which allows to preserve the form (22) of the prior state[
L′p|txt − µ

f
t

]′
Dp|t

[
L′p|txt − µ

f
t

]
. (35)

Finally, Gaussian distribution of the i-th state entry keeps its
factorized form (24), i.e.

Nxi;t(µ
f
i;t −

x̊∑
k=i+1

Lp|t;kixk;t,
1

Dp|t;ii
). (36)
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The obtained results are proved by direct calculation of
the integral (10). Verification of the entry-wise updating by
means of comparison with solution of (9) is available in [16].

Remark 1. Exploitation of the joint pdf (1) as a system
model and, therefore, presence of the state xt−1 in both
state evolution and observation models (2-3) enables a full
factorization of the observation model (3). It means, that
in practice the proposed algorithm is not restricted by a
single-output model, as its previous versions [13].

Remark 2. The proposed algorithm can be sensitive to
preserving of positive-definiteness of matrix D̃t, used in
calculation of final variances of the state entries. For more
stability it would be useful to try a QR factorization, where
Q is an orthogonal matrix and R is an upper triangular one.
However, the present paper is focused on the proposed LDL′

factorization due to a lower computational complexity.

C. Involvement of Discrete State Entry

The proposed factorization gives a chance to consider the
state estimation entry-wise, i.e. by rows. The execution of
the algorithm begins at the end of the state vector, i.e. i = x̊
in (36). Let’s replace a continuous state entry at the end of
the state entry by the discrete-valued one so that it is a scalar
one with a set of possible discrete values {0,1}. To facilitate
calculations, the last entry at the end of the output vector is
also replaced by the discrete one, i.e. yẙ;t ∈ {0,1}. Respec-
tively it is transformed into the discrete-valued variable via
chosen thresholds. Let’s assume that, according to the chain
rule, the joint pdf (1) takes a form f(xx̊;t, yẙ;t|ut, xx̊;t−1) =
f(xx̊;t|ut, xx̊;t−1, yẙ;t)f(yẙ;t|ut, xx̊;t−1) for the case of the
last discrete entries. The involved discrete state entry is
described it by an individual model with the alternative
distribution shown in Table I, where p with respective indices
denotes a probability of taking the possible values. The
system input ut ∈ u∗ is a known constant. The alternative

TABLE I
ALTERNATIVE DISTRIBUTION f(xx̊;t|ut, xx̊;t−1, yẙ;t)

xx̊;t = 0 xx̊;t = 1
xx̊;t−1 = 0, yẙ;t = 0 p0|00 p1|00
xx̊;t−1 = 1, yẙ;t = 0 p0|10 p1|10
xx̊;t−1 = 0, yẙ;t = 1 p0|01 p1|01
xx̊;t−1 = 1, yẙ;t = 1 p0|11 p1|11

distribution from Table I can be written in the product form

f(xx̊;t|ut, xx̊;t−1, yẙ;t), (37)

=
∏

xx̊;t|ut,xx̊;t−1,yẙ;t

p
δ(xx̊;t|ut,xx̊;t−1,yẙ;t,x̂x̊;t|ut,x̂x̊;t−1,ŷẙ;t)

xx̊;t|ut,xx̊;t−1,yẙ;t
,

where δ is Dirac delta and x̂x̊;t, xx̊;t−1 and ŷẙ;t denote
possible values from Table I. Similarly, the discrete-valued
output entry is described by the alternative distribution shown
in Table II. The product form of the alternative distribution

TABLE II
ALTERNATIVE DISTRIBUTION f(yẙ;t|ut, xx̊;t−1)

yẙ;t = 0 yẙ;t = 1
xx̊;t−1 = 0 p0|0 p1|0
xx̊;t−1 = 1 p0|1 p1|1

TABLE III
PRIOR ALTERNATIVE DISTRIBUTION

xx̊;t−1 = 0 xx̊;t−1 = 1
p0(t−1) p1(t−1)

from Table II is as follows.

f(yẙ;t|ut, xx̊;t−1), (38)

=
∏

yẙ;t|ut,xx̊;t−1

p
δ(yẙ;t|ut,xx̊;t−1,ŷẙ;t|ut,x̂x̊;t−1)

yẙ;t|ut,xx̊;t−1
,

The prior alternative distribution of the pdf
f(xx̊;t−1|d t−1) with the chosen probabilities of
taking the possible values is shown in Table III, where
p1(t−1) = (1−p0(t−1)). It takes the following product form.

f(xx̊;t−1|d t−1) =
1∏
k=0

p
δ(xx̊;t−1,k)

k(t−1) , (39)

where
∑1
k=0 pk(t−1) = 1, pk(t−1) > 0 ∀ k.

The discrete state entry estimation is performed according
to the technique, proposed in [19]. The integral (10) is
replaced a regular summation for the discrete state.

f(xx̊;t|d t), (40)

=
∑

xx̊;t−1∈{0,1}

,

∏
xx̊;t|ut,xx̊;t−1,yẙ;t

p
δ(xx̊;t|ut,xx̊;t−1,yẙ;t,x̂x̊;t|ut,x̂x̊;t−1,ŷẙ;t)

xx̊;t|ut,xx̊;t−1,yẙ;t
,

×
∏

yẙ;t|ut,xx̊;t−1

p
δ(yẙ;t|ut,xx̊;t−1,ŷẙ;t|ut,x̂x̊;t−1)

yẙ;t|ut,xx̊;t−1
,

×
1∏
k=0

p
δ(xx̊;t−1,k)

k(t−1) .

The probabilities for the values f(xx̊;t = 0|d t) = p0(t) and
f(xx̊;t = 1|d t) = (1 − p0(t)) can be calculated with the
help of (40).

p0(t), (41)

=
∑

xx̊;t−1∈{0,1}

,

∏
xx̊;t|ut,xx̊;t−1,yẙ;t

p
δ(xx̊;t|ut,xx̊;t−1,yẙ;t,0|ut,x̂x̊;t−1,ŷẙ;t)

xx̊;t|ut,xx̊;t−1,yẙ;t
,

×
∏

yẙ;t|ut,xx̊;t−1

p
δ(yẙ;t|ut,xx̊;t−1,ŷẙ;t|ut,x̂x̊;t−1)

yẙ;t|ut,xx̊;t−1
,

×
1∏
k=0

p
δ(xx̊;t−1,k)

k(t−1) ,

9th International PhD Workshop on Systems and Control: Young Generation Viewpoint              1. - 3. October 2008, Izola, Slovenia



= p0|00p0|01p0|0p1|0p0(t−1)︸ ︷︷ ︸
sum for xx̊;t−1=0

,

+ p0|10p0|11p0|1p1|1(1− p0(t−1))︸ ︷︷ ︸
sum for xx̊;t−1=1

.

The result is obtained by substitution of probabilities from
Table I, corresponding to the state xx̊;t = 0 and all prob-
abilities from Tables II-III and subsequent summation over
respective values of the state xx̊;t−1. The probability p1(t)

is calculated quite similarly with substitution of probabilities
from Table I, corresponding to the state xx̊;t = 1 and should
be a complement of (41). It means, that the updated pdf
f(xx̊;t|d t) preserves the form (39)

f(xx̊;t|d t) =
1∏
k=0

p
δ(xx̊;t,k)

k(t) , (42)

with
∑1
k=0 pk(t) = 1, pk(t) > 0 ∀ k.

The filtering begins from the described discrete state entry
estimation. The mean value to be involved in the consequent
processing is calculated as a sum of possible values of the
entry multiplied by the updated probabilities, i.e.

µfx̊;t =
1∑
k=0

xx̊;t,kpk(t). (43)

Then the algorithm, proposed in Subsection III-B, is exe-
cuted, starting at the last state entry, i.e. for i = {x̊, x̊ −
1, . . . , 1}.

IV. ILLUSTRATIVE EXPERIMENTS

A physical interpretation of the state vector of the mixed
type composed so that it contains several continuous entries
and the last discrete one can be explained as follows. The
expected application of the research is a traffic control area,
where the continuous Gaussian state entries are interpreted
as the car queue lengths at the intersection lanes [20]. The
discrete state entry is a two-valued variable, indicating, for
example, signal lights (0 = green, 1 = red), visibility
(0 = good, 1 = worse), etc. Before to implementation
with a traffic state-space model [20], the proposed filtering
with mixed states should be tested on simple simulated
data. This section provides the illustrative experiments with
a simple simulated system with two state entries and two
output entries in order to verify a correct performance of the
proposed algorithm.

The last discrete state entry estimation is tested on the
following data. According to (39), the prior probabilities are
chosen as p0(t−1) = 0.5 and p1(t−1) = 0.5. The simulated
probabilities of the model from Tables I-II are demonstrated
in Tables IV-V. The system input is a constant ut = 0.5. The
discrete output entry has been simulated by a discrete system
generator for 100 time moments. The estimation of the
discrete state is shown at Fig. 1 (top). For more illustrative
plotting, the results of the filtering are shown only for 50 time
moments. The rest of the estimates are similar. The mean
value of the last state entry has been calculated according to

TABLE IV
SIMULATED PROBABILITIES FOR f(x2;t|ut, x2;t−1, y2;t)

x2;t = 0 x2;t = 1
x2;t−1 = 0, y2;t = 0 0.7711 0.2289
x2;t−1 = 1, y2;t = 0 0.6702 0.3298
x2;t−1 = 0, y2;t = 1 0.3583 0.6417
x2;t−1 = 1, y2;t = 1 0.9960 0.0040

TABLE V
SIMULATED PROBABILITIES FOR f(y2;t|ut, x2;t−1)

y2;t = 0 y2;t = 1
x2;t−1 = 0 0.1071 0.8929
x2;t−1 = 1 0.8939 0.1061

(43) and used in the subsequent factorized Kalman filtering
with the continuous state entries.

The following simulated data are used in the models (2-3).

A =
[

0.1 −0.9
0.9 0.01

]
, B =

[
−0.4
−0.4

]
, (44)

C =
[
−0.1 1
0.1 −0.5

]
, H =

[
1
−1

]
. (45)

The noise covariances Rw and Rv are computed as a
mean of squares of differences between the state (or output
respectively) value and its conditional mean. The mean is
substituted by the samples of a periodic course of the state
(or output), which is constructed as a spline approximation
of several last periodic courses. The resulted covariance
matrices are as follows.

Rw =
[

0.3974 −0.1060
−0.1060 0.4011

]
, (46)

Rv =
[

0.4844 0.3598
0.3598 0.9887

]
. (47)

The chosen initial state mean vector and covariance matrix
are

µ0 =
[

0
0

]
, P0 =

[
2.029 −2.784
−2.784 5.432

]
. (48)

The estimation of the continuous state entry is demon-
strated at Fig. 1 (bottom). Good correspondence between
simulated and estimated values at Fig. 1 verifies the adequate
performance of the proposed version of the filtering.

V. CONCLUSIONS AND FUTURE WORKS

The paper deals with the entry-wise organized filtering.
The proposed filtering enables the entry-wise updating of
the states and allows to describe them individually. Such a
version of the state estimation is directed towards processing
of the mixed-type (continuous and discrete-valued) states.
The application to continuous data, described by Gaussian
linear state-space model with Gaussian observations and
Gaussian prior distribution provides Kalman filter. The entry-
wise updating of the posterior state estimates is reached via
application of the chain rule and factorization of covariance
matrices. The resulted Gaussian distributions are obtained
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Fig. 1. Filtering with discrete state (top) and with continuous state (bottom)

in the factorized form. The paper considers a special case of
the joint estimation of the mixed-type state with the discrete-
valued state entry, involved at the end of the state vector. The
discrete state entry is described by the alternative distribu-
tion. Its estimation is realized via filtering for the discrete-
valued variables, where integration is replaced by a regular
summation of probabilities. The practical application of the
research is expected at the traffic control area. However, the
proposed solution is not restricted by this application and is,
in general, an universal one. Future work in the discussed
field includes a solution of the joint filtering of mixed states,
not restricted by the presented special case with the last
discrete entry. The involvement of the discrete entry among
the continuous ones is planned to be the next problem to
be considered. The experimental part of the work will be
devoted to implementation and tests with realistic traffic data
provided by the traffic microsimulator AIMSUN [21].
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